

1

Business Intelligence Seeker -
User Agent

Project Acronym UNDERSTANDER

Document-Id D.3

File name

Version Final document

Date start: 01 January 2014
end: 28 February 2014

Author(s) Violeta Damjanovic (SRFG)

QA Process Verteiler:
Prüfung durch:
Genehmigung durch:

2

Table of Contents

1. Introduction
1.1. Motivation
1.2. Scope
1.3. Structure of the Document

2. Related Work
2.1 Agents and Multi-Agent Systems
2.2 Ontologies in Multi-Agent Systems
2.3 Strategic Interaction in Multi-Agent Systems
2.4 Multi-Agent System Based Simulation

3. User Agents in UNDERSTANDER
3.1 A Communication Protocol in UNDERSTANDER
3.2 Agent Behaviour

3.2.1 Primitive Behaviours
3.2.2 Composite Behaviours
3.2.3 Agent Behaviour in UNDERSTANDER

4. Conclusion
References

3

1. Introduction
The following table summarizes the main goals, content, methods and milestones related to
Work Package 3 (WP3) of UNDERSTANDER.

Goals The main goal of this report is to develop the BI agent that can be “primed”
with the BI scripts, gets a seed set of URIs, then starts aggregating BI
knowledge by traversing the WWW from the seed URIs. Alternatively, we will
develop a variant that can be seeded via the search result from one of the
search engines.

Description
of the
Content

● Software of the web crawling
● BI seeking agent

Method ● Semi-formal specification and subsequent programming in JADEX
and Prolog via RESTful services

Milestones ● User agent with domain-specific priming scripts for BI
● Prototype search service following the Russell & Norvig’s agent

methodology, with the agent’s evaluation function specialized through
the formalized and customized BI scripts

● Open source software + specification + paper

4

1.1. Motivation
User agents are characterized by holding different views of the world, which requires a common
ontology to be used to allow for their interoperability and cooperation, without affecting their
autonomy. In other words, user agents need to communicate and share an agreed terminology
describing a certain domain of discourse. This terminology is considered to be the common
domain ontology. However, as the authors in (Malucelli, 2006) noticed: “even with a common
domain ontology, people may use different terms to represent the same item, or choose a more
general, or detailed representation.” Although some authors believe this can be overcome
through ontology integration, ontology alignment, or by merging two ontologies (c.f. (Pinto et al.,
1999)), recent discussion on the role of ontologies versus Linked Data brings new perspective
for knowledge share (Nikolov & Motta, 2010) (Ding, Finin, & McGuinness, 2010).

At the same time, the growth of new distributed computing standards became a critical driver for
the development of next generation systems. In that context, the role of complex agent systems
is expected to bridge the gap between research and applications more than even before, by
incorporating non-trivial agent-based simulations tools into everyday systems engineering.

1.2. Scope
User agents in UNDERSTANDER are developed in JADE multi-agent platform. This report
discusses the relation between the agents and their knowledge base (previously presented in
D.4 “Business Intelligence Knowledge base”), the agent communication protocol and specific
behaviour implementing their functionality.

1.3. Structure of the Document
Section 2 discusses the state of the art technologies in several areas related to Web agents,
such as Multi-Agent Systems (MASs), ontologies used by MASs, interaction and simulation
based on MASs. Section 3 presents agent’s communication protocols in UNDERSTANDER, as
well as their specific behaviour, which determines the way of interaction between the Client and
the Server agent. Section 4 concludes the document.

5

2. Related Work
This chapter presents the state of the art in several areas related to Web agents, such as Multi-
Agent Systems (MASs), ontologies used by MASs, interaction and simulation based on MASs.

2.1 Agents and Multi-Agent Systems
The authors in (Wooldridge & Jennings, 1995) present one of early discussions on Web agent
technologies. (Nwana, 1996), another early reference paper on agent technologies, gives an
overview of the different agent types such as: collaborative agents, interface agents, mobile,
information, reactive, hybrid, heterogeneous, smart agents. (Wooldridge, 2002) defines an
agent as “a computer system that is situated in some environment and that is capable of
autonomous action in this environment in order to meet its design objectives”. It is a computer
program with a relatively complete functionality, which cooperates with others to meet its
designed objectives (Qingning et al., 2003). An agent can act in a flexible and autonomous way,
within the environment where it is situated (Jennings, 2000). It is task-oriented and capable of
decision-making (Marivate et al., 2008).

Although agents can act separately to solve a particular problem, it is frequent for systems to be
composed of several agents developed to cooperate in a complex problem, involving data,
knowledge or distributed control (Oliveira et al., 1999). A composition of several agents with the
capability of mutual interaction and communication in order to achieve goals, is known as Multi-
Agent Systems (MAS). It is used to solve complex problem that cannot be done by individual
agent; for example, complex problems such as distributed domains (e.g. global manufacturing
supply chain network (Jiao et al., 2006) (Gog & Gan, 2005)), distributed computing (Zhong et
al., 2004) (Chira, 2007), software collaborative development environment (Ahamo &
Aljawaherry, 2012) (Chuan, 2011), etc.

A MAS is usually designed and developed in a modular fashion to cover various points of view
(expert’s knowledge), cooperate (interact) through a set of actions, and be reusable. Interaction
between agents is expected to be reactive, and influence the current status and the future
behaviour of the agents. “The agents interact through a series of events, during which they are
in contact with each other in some way, whether this contact is direct or takes place through
another agent or through the environment“ (Ferber, 1999).

A MAS has ability to increase the efficiency and effectiveness of working groups in distributed
environments. For example, the authors in (Romero et al., 2008) introduced a MAS-based
simulation tool to support training in global requirement elicitation process. They used agent
technology to simulate various stakeholders in order to enable requirement engineers to
understand and gain experience in acquiring requirement elicitation. Another example is
Col_Req, the multi-agent based collaborative requirements tool that supports requirement
engineers for real-time systems during the requirement engineering phase (Giri, 2011). The

6

authors in (Pakdeetrakulwong & Wongthongtham, 2013) proposed a conceptual framework of a
MAS-based recommender system to provide active support to access and utilize knowledge
and project information (based on the software engineering ontology) for long-distance
collaborative work (e.g., distributive (multi-site) development of software systems).

Nowadays, Agent-based Directed Simulation (ADS) is an area exploring agent models for
development of the domain-specific simulations, simulation techniques and toolkits. ADS can
be classified into two categories: (i) agent-supported simulation (the use of agents as a support
facility to enable computer assistance in problem solving), and (ii) agent-based simulation (the
use of agents for the generation of model behaviour in a simulation). Section 2.4 discusses
MAS-based simulation in more details.

2.2 Ontologies in Multi-Agent Systems
Knowledge sharing and exchange is one of the key factors in the development of MAS (Iordan
et al., 2008). Each agent need to collaborate with other agents, which implies their ability to
communicate and understand messages from one another. Agent communication requires the
use of communication protocols, communication languages and ontologies. Ontologies play an
important role as they can support the integration of heterogeneous and distributed information
sources.

Lack of standardization, which hampers communication and collaboration between agents, is
known as the interoperability problem (Willmott, 2001). In that context, ontologies can be used
to facilitate the semantic interoperability, while Agent Communication Language (ACL) defined
by FIPA can be used as the language of communication between agents.

The authors in (Pakdeetrakulwong & Wongthongtham, 2013) identified several research
direction that integrate the use of ontologies and MAS. Similarly, the authors in (Paydar &
Kahani, 2011) introduced a multi-agent framework for automated testing of web-based
applications. (Lee & Wang, 2009) proposed an ontology-based computational intelligent MAS
for Capability Maturity Model Integration (CMMI) assessment. The authors developed the
CMMI ontology to represent the CMMI domain knowledge. The research presented in (Nunes et
al., 2011) addresses the integration of MASs and Software Product Lines (SPLs). The authors
created an ontology for modeling the Multi-Agent System Product Lines (MAS-PLs). MADIS
(Chira, 2007) is a multi-agent design information system developed to support the distributed
design process. The MADIS ontology was developed to formally conceptualize the engineering
design domain and enable knowledge sharing, reuse and integration in a distributed design
environment. The authors in (Monte-Alto et al., 2012) proposed a multi-agent context
processing mechanism called ContextP-GSD (Context Processing on Global Software
Development) that utilizes contextual information to assist user’s task during the software
development project. OntoDiSen is an application ontology exploited in the ContextP-GSD
system, representing GSD contextual information.

In his PhD thesis, Malucelli (Malucelli, 2006) investigates ontology-based services for agents

7

interoperability. In that context, Malucelli compared various approaches to support
communication among agents using different ontologies. Here, we only briefly summarize the
state-of-the-art subsection presented in (Malucelli, 2006): “In the case of MAS, FIPA has
identified and analysed different types of interoperability problems that arise and has,
consequently, proposed the creation of an Ontology Agent (OA) to assist the community of
agents in the alignment of ontologies. However, the implementation of such service is left to
system developers. Furthermore, the FIPA Ontology Service Specification classifies this
domain-dependent task as very complex and possibly not always achievable. An
implementation of the OA is presented in (Suguri et al., 2001), which is a sample application of
an ontology shopping service that integrates multiple database schemata to verify and
demonstrate the specification. However, no mechanism is provided to match terms between
different ontologies.“

Only in recent years, the problem of handling different ontologies in MAS has been addressed
again. (Malucelli, 2006) gives a summary of the main contributions in this domain, as follows:

● (Steels, 1998) proposes a complex adaptive system approach based on an ontology and
a shared lexicon in a group of distributed agents, which are characterized by local
interactions, without central controlling agency. An agent can associate a single word
with several meanings and a given meaning with several words. The words are matched
using distance measurements.

● (Bailin & Truszkowski, 2002) describes an approach to ontology negotiation that allows
Web-based information agents to resolve mismatches in real-time, without human
intervention. The system employs the WordNet database as a data source to extend
each ontology's concept repertoire.

● (van Eijk et al., 2001) develops a communication mechanism in which translators
between the vocabularies of agents are generated. These translators are dynamically
constructed during the execution of the system and are based on the information the
agents exchange and on their underpinning ontologies. In this approach, there is no
global shared ontology and each agent has its own private ontology.

● (Tzitzikas & Meghini, 2003) considers peer-to-peer systems in which peers employ
taxonomies for describing the content of their objects and formulating semantic-based
queries to the other peers of the system. Each peer uses its own taxonomy and is
equipped with inter-taxonomy mappings to carry out the required translation tasks. This
methodology does not make any assumptions on how the involved taxonomies are
constructed or how they are used, but it requires the presence of two databases that
contain several common objects.

● (Burnstein et al., 2003) has sketched an approach to automatic derivation of programs
for translating the output of a source agent to the input representation of a target agent,
based on lambda-calculus. However, the approach does not provide any method for
establishing a mapping between heterogeneous ontologies.

● (Doherty et al., 2005) combine logic-based techniques with approximate reasoning. It
provides software or robotic agents with the ability to ask each other approximate
questions concerning unclear or unknown terms and actions. Each agent can
communicate in the language of the other agents and has a mediation function.

8

● (Williams et al., 2003) proposes a methodology for agents to develop local consensual
ontologies as a means supporting the communication within a multi-agent system of B2B
agents. The agents need to find related services (ontology concepts) between inter-
organisation ontologies and intra-organisation ontologies.

● (Wiesman and Roos, 2004) proposes a domain-independent methodology for handling
interoperability problems by learning mappings between ontologies. The learning
method is based on exchanging instances of concepts defined in the ontologies. They
focus on establishing a mapping between two concepts, one from each ontology.

● (van Diggelen et al., 2005) addresses the problem of establishing a suitable
communication vocabulary in a formal and abstract way. Each agent has a private
ontology which is incomprehensible to the other agents. The set of shared concepts is
represented in the communication vocabulary. To preserve soundness, the agents
translate (adopting a distribution function) private concepts into equivalent or more
general shared concepts.

Finally, approach proposed by (Malucelli and Oliveira, 2006) is focused on the resolution of
negotiation conflicts in a B2B domain. For that purpose, authors defined a set of services
addressing the interoperability problems during inter-agent communication. They use a mediator
agent called OSAg, which is responsible for the resolution of all negotiation conflicts that occur
within the MAS. All the matched concepts are memorised by the OSAg and kept for the future
negotiation rounds. The mapping between ontologies is established by comparing, for each pair
of concepts, the attributes (grouped by data type), the relation has-part and the descriptions of
the concepts.

2.3 Strategic Interaction in Multi-Agent Systems
(Panait & Luke, 2005) analyses interaction in MASs in terms of game-theory; for example, agent
interaction as a form of strategy games consisting of matrices of payoffs for each agent, based
on their joint actions. For example, evolutionary game theory was successfully used to study the
properties of cooperative coevolution (Ficici & Pollack, 2000) (Wiegand, 2003), to visualize
basins of attraction to Nash equilibria for cooperative coevolution (Panait et al., 2004), etc. In
the area of coordination games, various repeated games are introduced in the literature to
highlight specific issues associated with MAS. Claus and Boutilier (Claus & Boutilier, 1998)
introduce two simple 3x3 matrix games:

● a coordination game with two optima and high penalties for mis-coordination; and
● a coordination game with two Nash-equilibrium points, one of them corresponding to a

suboptimal collaboration.
These games are later used in (Kapetanakis & Kudenko, 2002) (Lauer & Riedmiller, 2000)
(Panait & Wiegand, 2003) to investigate multi-agent reinforcement learning and evolutionary
computation approaches.

Social dilemmas in game-theory concern the individual decisions of several agents, all of which
receive a joint reward (Glance & Huberman, 1994). The Iterated Prisoners’ Dilemma, Tragedy of

9

the Commons, Braess Paradox and Santa Fe Bar are some examples of social dilemma games
(Panait & Luke, 2005):

● The Iterated Prisoner’s Dilemma involves two or more agents supposedly accused of a
robbery; the agents have to choose between two actions: confess the crime or deny
participation in it. The settings are such that it is rational for individual agents to deny,
but it is in their collective interest for all to confess.

● In the Tragedy of the Commons, a number of agents share a resource of limited
capacity. When the joint usage of the resource exceeds the capacity, the service
deteriorates, and so do the rewards received by the agents.

● In the Braess Paradox problem, agents share two resources. The dilemma arises when
agents need to decide to start accessing the less utilized resource: if all agents decide to
do so, it will become overwhelmed and rewards will drop. Further details on these
problems, accompanied by a co-evolutionary approach to learning solutions to them, can
be found in (Mundhe & Sen, 2000).

● In the Santa Fe Bar problem, a large number of agents individually must decide whether
to go to a bar in Santa Fe. If too many or too few agents opt to go, their satisfaction is
lower than when a reasonable number of them decide to go (Arthur, 1994) (Greenwald
et al., 2002) (Wolpert et al., 1999).

Social dilemma problems have been used to model practical issues in real multi-agent
problems, such as e.g., network routing. During interaction, agents are in contact with each
other either directly, through another agent, or through the environment. (Ferber, 1999)
classifies the following types of interaction (see Table x) (Table below found in (Manzoni,
2009)):

● Independance: a simple juxtaposition of actions carried out by agent independently
without effective collaboration;

● Obstruction: agents get in touch in accomplishing their tasks, but they do not need one
another;

● Coordinate collaboration: agents have to coordinate their actions to have synergistic
advantages of pooled skiles (e.g. industrial activities);

● Individual competition: resources are not limited and the competition is not related to
them;

● Collective competition: agents have to group into coalitions or associations to be able
to achieve their goals;

● Individual conflict on resources: the object of conflict is insufficient resource;
● Collective conflict on resources: all forms of collective conflicts in which the objective

is to obtain possession of territory or a resource.

10

Interaction models in MASs are often inspired by other disciplines, e.g. social science, biology,
etc. These models can support either direct, or indirect communication. For example, KQML
(Knowledge Query and Manipulation Language) and KIF (Knowledge Interchange Format) are
examples of direct communication languages. KQML defines performatives to support
conversation among agents; KIF allows to represent knowledge and information about agents,
beliefs, desires, intentions, perception plans. In addition, agents must share an ontology to
describe a domain. In indirect agent communication, agents interact through an intermediate
entity with the access rules and interaction mechanisms.

2.4 Multi-Agent System Based Simulation
Agent-oriented approaches have also had an effect on simulation methods (Yilmaz & Ören,
2009a). (Uhrmacher, 2002) shows several new challenges in the context of evaluating software
agents by simulation-based approaches. A prominent example is documented in (Himmelspach
et al., 2003), that is the synchronization problem of simulation software implementing the
testbed and the software agents under test. Asynchronous interaction provides a loose
coupling between simulation and agents, as shown in RoboCup and RoboCup Rescue
scenarios (Takahashi, 2008).

Another effect that agent research has had on modeling and simulation methods has been in
the context of model composition and simulation interoperation (Tolk, 2006) (Yilmaz and
Tolk, 2006). Current simulation protocols are focused on the definition of standardized
information exchange, such as Protocol Data Units in IEEE1278 (of Electrical and Engineers) or
Federation Object Model in IEEE1516 (of Electrical and Engineers). The matching of simulation
internal data to these information exchange elements is typically hard-coded. By supporting

11

reuse at the modeling level, other agents model have become of interest, such as meta-
description and ontologies for selecting suitable models and for relating different modeling
formalisms (Tolk et al., 2007).

The synergy of simulation and software agents is the essence of a novel research area, called
Agent-Directed Simulation (ADS). ADS opens new vistas, and has important practical
implications (Yilmaz & Ören, 2009a) (Yilmaz & Ören, 2009b) (Ören & Yilmaz, 2012). The
emergent need to model complex situations whose overall structures emerge from interactions
between individual entities and cause structures on the macro level to emerge from the models
at the micro-level, is making agent paradigm a critical enabler in modeling and simulation of
complex systems.

Two overall aspects of simulation are (i) experiments and (ii) experience (Ören & Yilmaz, 2012).
From the perspective of experiments, simulation is about performing goal-directed experiments
using models of dynamic systems. Experiments are performed for decision support,
understanding, and education. From the point of view of experience, simulation is about gaining
experience by the use of a representation (or a model) of a system. Gaining experience through
simulation could be done for two categories of activities, e.g. for training and for entertainment
(simulation games).

ADS includes contributions of simulation to agents (i.e., agent simulation) and contributions of
agents to simulation (i.e., agent-supported simulation and agent-based simulation).

● Agent-supported simulation is the use of agents as a support facility to (1) enable
computer assistance in problem solving, or (2) enhance cognitive capabilities of
simulation systems. As support facility, agents can support front-end user system
interface functions, such as problem specification, or back-end user-system interface
functions, such as data compression, explanation, problem and/or solution
documentation, and solution selection. Agents can enhance cognitive capabilities of
modeling and simulation systems by providing understanding and multi-understanding
abilities. About 60 types of machine understanding are explained in (Ören, 2000) and
(Ören et al., 2007). Multi-understanding and switchable understanding are explained in
(Ören et al., 2009).

● Agent-based simulation focuses on the use of agents for the generation of model
behavior in a simulation study, such as dynamic model composition while simulation is
running. In (Ören & Yilmaz, 2009a), authors elaborate on agent-directed simulation, as
well as three annual events and associated publications on ADS.

12

3. User Agents in UNDERSTANDER
UNDERSTANDER’s user agents are based on Russell and Norvig’s model of a Utility-based
Agent (see Figure 1 below), which tries to maximize its own “happiness”. The Utility-based
Agent differs from Goal-based Agent by adding a utility measure, that is a function specifically
applied to the different possible actions that can be performed in the environment. The Utility-
based Agent rates each scenario to see how well it achieves certain criteria with regard to the
production of a good outcome (Mills & Stufflebeam, 2005). Things like the probability of
success, the resources needed to execute the scenario, the importance of the goal to be
achieved, the time it will take, might all be factored into the utility function calculations.

Figure 1. A Complete Utility-based Agent (Source:

http://www.cs.berkeley.edu/~russell/aima1e/chapter02.pdf)

Intelligent agents maximize their utility functions that proactively pursue their goals. Apart
knowledge about the world, which makes the agent autonomous, they also need some
knowledge on their percept sequence (Mills & Stufflebeam, 2005). It is not always predictable,
and depends on the constantly changing world (environment), which further influence mapping
of decision procedure to a plan of action in pursuit of its goals. Since the programmer cannot
generally predict every state of the world that will be confronted by the agent, by giving the
agent some goals, the ability to constantly reassess its situation, the ability to learn through trial
and error, and in addition giving it a number of plans and ways of evaluating those plans as they
become possible paths to the goal, the agent gets an enormous amount of flexibility and
adaptability. To achieve such a functionality, M. Wooldridge proposes the following basic control
loop of an autonomous agent (Wooldridge, 2002):

13

while true
 observe the world;
 update internal world model;
 deliberate about what intention to achieve;
 use means/ends reasoning to get a plan for the intention
 execute the plan
end while

In other words, the agent observes the world and collects percepts. The agent updates its
internal world model by adding the new percept to its percept sequence and pre-programmed
information about the world. Deliberation about what intention to achieve, given the updated
world model, is based on the overall goals of the agent. Once a decision is made about what
intention to achieve, the agent consults its plan library and/or its decision procedures (e.g.,
means/ends reasoning) for determining what means to use to reach its end. Finally, the agent
executes the plan, provided no new percept calls for an altering of its current intention. By
adding the agent’s ability to learn from interacting with other agents, human and computers, to
the above model, the flexibility and adaptability of the agent will only improve.

3.1 A Communication Protocol in UNDERSTANDER
The agent communication in UNDERSTANDER follows a simple protocol, as described and
illustrated below, in Figures 2-3:

● To make an operation, the ClientAgent sends a REQUEST message to the ServerAgent.
The ServerAgent responds with an INFORM after processing the request, or with an
NOT_UNDERSTOOD message if it cannot decode the content of the message.

Figure 2. The agent communication protocols in UNDERSTANDER: REQUEST

● To query specific information, the ClientAgent sends a QUERY_REF to the ServerAgent.

The ServerAgent responds with an INFORM message after processing the query, or
with a NOT_UNDERSTOOD, if it cannot decode the content of the message.

14

Figure 3. The agent communication protocols in UNDERSTANDER: QUERY_REF

3.2 Agent Behaviour
The agents in MAS operate independently and in parallel with others agents. Agent’s
parallelisms could be implemented by assigning a Java Thread to each agent, which is rather
slow and not very efficient in case of large-scale parallelism. Therefore, to support efficiently
parallel activities within an agent, JADE (c.f. http://jade.tilab.com/) has introduced a concept
called Behaviour.

Behaviour is an Event Handler, a method which describes how an agent reacts to an event
(JADE, 2004). In JADE, behaviours are defined as classes and the Event Handler code is
placed in a method called action. For example, coding a negotiation process includes the
following steps: (i) sending offer, (ii) waiting for counter-offers, and (iii) reaching an agreement.
This activity consists of an alternation of active phases (when the agent decides what to do and
sends messages), and passive phases (when the agent waits for an answer). Each behaviour
execution corresponds to one single instantaneous active phase. To implement long-term
activities like a negotiation, we have to provide as many different Behaviours as there are
active phases in the activity (one for every active phase). We must also arrange for them to be
created and triggered in the right sequence; for example, by specifying behaviour scheduling
introducing time parameters (defined in milliseconds).

JADE provides various Behaviours which can be extended to model the complex activity of real
agents. In general, there exist two kinds of behaviour classes:

● Primitive Behaviours, such as the Simple or Cyclic Behaviours, and
● Composite Behaviours, which can combine both simple and composite behaviours to

be executed either in sequence or in parallel.

Figure 4 shows an annotated UML class diagram for JADE behaviour (JADE Guide, 2010).

15

Figure 4. An annotated UML class diagram for JADE behaviour

The above class hierarchy (Figure 4) is defined in the jade.core.behaviours package of
the JADE framework. JADE differs the following primitive behaviours: SimpleBehaviour,
CyclicBehaviour, and OneShotBehaviour. Composite behaviours in JADE are
ParallelBehaviour, SequentialBehaviour and FSMBehaviour. The abstract class Behaviour
supports (i) modelling of agent tasks, and (ii) behaviour scheduling (starting, blocking and
restarting of a behaviour object). The block() method allows to block a behaviour object until
certain event happens. A behaviour can be explicitly restarted by calling its restart()
method. It also provides two methods, named onStart() and onEnd(). These methods can
be overridden by user defined subclasses when some actions are to be executed before and
after running behaviour execution. onEnd() returns an int (integer) that represents a
termination value for the behaviour. The rest of this section further describes each of agent’s
behaviours supported by JADE (JADE Guide, 2010).

3.2.1 Primitive Behaviours
● Class SimpleBehaviour: This abstract class models simple atomic behaviours. Its

16

reset() method can be overridden by user defined subclasses.
● Class CyclicBehaviour: This abstract class models atomic behaviours that must be

executed forever. This behaviour stays active as long as its agent is alive and will be
called repeatedly after every event. Quite useful to handle message reception. Its
done() method always returns false.

● Class OneShotBehaviour: This abstract class models atomic behaviours that must be
executed only once and cannot be blocked. Its done() method always returns true.

3.2.2 Composite Behaviours
● Class CompositeBehaviour: This abstract class models behaviours that are made up

by composing a number of other behaviours (children). In particular this class provides a
common interface for children scheduling, but does not define any scheduling policy.
The scheduling policy must be defined by subclasses (SequentialBehaviour,
ParallelBehaviour and/or FSMBehaviour).

● Class SequentialBehaviour: This class is a CompositeBehaviour that executes its sub-
behaviours sequentially and terminates when all sub-behaviours are done. It is used
when a complex task can be expressed as a sequence of atomic steps (e.g. do some
computation, then receive a message, then do some other computation).

● Class ParallelBehaviour: This class is a CompositeBehaviour that executes its sub-
behaviours concurrently and terminates when a particular condition on its sub-
behaviours is met. Proper constants to be indicated in the constructor of this class are
provided to create a ParallelBehaviour that ends when all its sub-behaviours are done,
when any one among its sub-behaviour terminates or when a user defined number N of
its sub-behaviours have finished. It is used when a complex task can be expressed as a
collection of parallel alternative operations, with some kind of termination condition on
the spawned subtasks. In other words, the important thing about ParallelBehaviour is the
termination condition: we can specify that the group terminates when ALL children are
done, N children are done, or ANY child is done.

● Class FSMBehaviour: This class is a CompositeBehaviour that executes its children
(subclasses) according to a Finite State Machine (FSM), which is defined by the user.
Each child (subclass) represents the activity to be performed within a state of the FSM
and the user can define the transitions between the states of the FSM. When the child
corresponding to state Si completes, its termination value (as returned by the onEnd()
method) is used to select the transition to fire and a new state Sj is reached. At next
round, the child corresponding to Sj will be executed. Some of the children of an
FSMBehaviour can be registered as final states. The FSMBehaviour terminates after the
completion of one of these children.

● class WakerBehaviour: This abstract class implements a one-shot task that must be
executed only once, after a given timeout is elapsed.

● class TickerBehaviour: This abstract class implements a cyclic task that must be
executed periodically.

JADE also provides other Behaviour such as SimpleAchieveREInitiator, and

17

SimpleAchieveREResponder.

3.2.3 Agent Behaviour in UNDERSTANDER
In case of agents in UNDERSTANDER, we’re using the classes SequentialBehaviour,
ParallelBehaviour, SimpleBehaviour, CyclicBehaviour, OneShotBehaviour and
WakerBehaviour. The ParallelBehaviour is useful only when phases of parallel activity within
more complex patterns such as Sequential or Cyclic activity is required. The CyclicBehaviour is
active as long as its agent is alive and is useful to handle message reception. Figures 5-6
illustrates the way on which behaviours are invoked via the Client and the Server agents in
UNDERSTANDER, respectively. For example, Figure 5 shows the Client agent invoking
WaitServerResponse class, which extends ParallelBehaviour, to handle the task of sending
message (message about contacting server). Class ReceiveResponse extends
SimpleBehaviour and implements receiving of servers response, while a WakerBehaviour is
added to terminate the waiting if there is no response from the server.

Figure 5. Client Agent in UNDERSTANDER and its “behaviours”

Figure 6 shows the Server agent’s behaviour, which setup() method sets the agent’s main
behaviour, which is SequentialBehaviour. It invokes: RegisterInDF() method
(OneShotBehaviour) and ReceiveMessages() method (CyclicBehaviour). The Directory
Facilitator (DF) is a centralized registry of entries which associate service descriptions to agent
IDs. The same basic data structure, the DFAgentDescription (DFD), is used both for adding an
entry or searching for services. The difference is that when registering, you provide a complete
description and an AID; whereas when searching, you provide a partial description with no
AID. The search returns an array of complete entries (with AIDs) whose attributes match your
description and you can extract the ID of suitable agents from those entries.

18

Figure 6. Server Agent in UNDERSTANDER and its “behaviours”

The following code additionally illustrates the Client agent’s behaviour. Firstly, we import Java
libraries needed to implement the ParallelBehaviour, SimpleBehaviour, and WakerBehaviour.
We also import the knowledge base (ontologies) developed in D.4 “Business Intelligence
Knowledge Base” (WP4) (i.e. HomeHeatingOntology and HomeHeatingVocabulary). Secondly,
we define sendMessage() method that includes WaitServerResponse() method that
extends ParallelBehaviour. Finally, WaitServerResponse() method includes
ReceiveResponse() method (that is SimpleBehaviour) and WakerBehaviour that interrupts
the programme after 5000 msec.

...
import jade.core.behaviours.ParallelBehaviour;
import jade.core.behaviours.SimpleBehaviour;
import jade.core.behaviours.WakerBehaviour;
...
import ontologies.HHManufacturer;
import ontologies.HHTechnology;
import ontologies.HomeHeatingOntology;
import ontologies.HomeHeatingVocabulary;
import ontologies.Problem;
import ontologies.SearchingManufacturersOperation;
import ontologies.SearchingTechnologiesOperation;
...

19

void sendMessage(int performative, AgentAction action) {
// utility method
 if (server == null) lookupServer();
 if (server == null) {
 alertGui("Unable to localize the server!");
 return;
 }
 ACLMessage msg = new ACLMessage(performative);
 msg.setLanguage(codec.getName());
 msg.setOntology(ontology.getName());
 try {
 getContentManager().fillContent(msg, new Action(server,
action));
 msg.addReceiver(server);
 send(msg);
 alertGui("Contacting server... Please wait!");
 addBehaviour(new WaitServerResponse(this));
 }
 catch (Exception ex) { ex.printStackTrace(); }
 }
...
class WaitServerResponse extends ParallelBehaviour {
// adding a SimpleBehaviour to receive servers response and
// a WakerBehaviour to terminate the waiting
 WaitServerResponse(Agent a) {
 super(a, 1);
 addSubBehaviour(new ReceiveResponse(myAgent));
 addSubBehaviour(new WakerBehaviour(myAgent, 5000) {
 protected void handleElapsedTimeout() {
 alertGui("No response from server. Please, try
later!");
 resetStatusGui();
 }
 });
 }
 }

class ReceiveResponse extends SimpleBehaviour {
// Receive and handle server responses
 private boolean finished = false;
 ReceiveResponse(Agent a) {
 super(a);
 }
 public void action() {

20

 ACLMessage msg = receive(MessageTemplate.MatchSender(server));

 if (msg == null) { block(); return; }
 if (msg.getPerformative() == ACLMessage.NOT_UNDERSTOOD){
 alertGui("Response from server: NOT UNDERSTOOD");
 }
...
 catch (Exception e) { e.printStackTrace(); }
 }
 resetStatusGui();
 finished = true;
 }
 public boolean done() { return finished; }
 public int onEnd() { command = WAIT; return 0; }
 }

The following lines of code illustrates the Server agent’s behaviour. Similarly to the Client agent,
the first step of the Server agent imports behaviour-related libraries, and home heating
knowledge base (i.e. HomeHeatingOntology and HomeHeatingVocabulary). Furthermore, we
define setup() method that sets the main behaviour (SequentialBehaviour) invoking
RegisterInDF() method and ReceiveMessages() method. As shown in Figure 6,
RegisterInDF() method extends OneShotBehaviour, while ReceiveMessages() method
extends CyclicBehaviour, by invoking several subclasses (OneShotBehaviour): (i) to perform
searching operation about home heating manufacturers and/or home heating technologies
(REQUEST as shown in Figure 2), and (ii) query specific information (QUERY_REF as shown in
Figure 3). These subclasses are the following: class HandleManufacturerOperation,
HandleTechnologyOperation, HandleManufacturerInformation, and
HandleTechnologyInformation.

...
protected void setup() {
...
 // Set the main behaviour
 SequentialBehaviour sb = new SequentialBehaviour();
 sb.addSubBehaviour(new RegisterInDF(this));
 sb.addSubBehaviour(new ReceiveMessages(this));
 addBehaviour(sb);
 }
 class RegisterInDF extends OneShotBehaviour {
// Register in the DF
 RegisterInDF(Agent a) {
 super(a);

21

 }
 public void action() {
 ServiceDescription sd = new ServiceDescription();
 sd.setType(SERVER_AGENT);
 sd.setName(getName());
 sd.setOwnership("Violeta");
 DFAgentDescription dfd = new DFAgentDescription();
 dfd.setName(getAID());
 dfd.addServices(sd);
...

 class ReceiveMessages extends CyclicBehaviour {
// Receive requests and queries from client agent
 public ReceiveMessages(Agent a) {
 super(a);
 }
 public void action() {
 ACLMessage msg = receive();
 if (msg == null) { block(); return; }
 try {
 ContentElement content =
getContentManager().extractContent(msg);
 Concept action = ((Action)content).getAction();
 switch (msg.getPerformative()) {
 case (ACLMessage.REQUEST):
System.out.println("Request from " + msg.getSender().getLocalName());
 if (action instanceof SearchingTechnologiesOperation)
 addBehaviour(new HandleTechnologyOperation(myAgent, msg));
 else if (action instanceof SearchingManufacturersOperation)
 addBehaviour(new HandleManufacturerOperation(myAgent, msg));
 else replyNotUnderstood(msg);
 break;

 case (ACLMessage.QUERY_REF):
System.out.println("Query from " + msg.getSender().getLocalName());
 if (action instanceof ManufacturerInformation)
 addBehaviour(new HandleManufacturerInformation(myAgent, msg));
 else if (action instanceof TechnologyInformation)
 addBehaviour(new HandleTechnologyInformation(myAgent, msg));
 else replyNotUnderstood(msg);
 break;
…
 }

22

 class HandleManufacturerOperation extends OneShotBehaviour {
// Handler for an Operation request
 private ACLMessage request;
 HandleManufacturerOperation(Agent a, ACLMessage request) {
 super(a);
 this.request = request;
 }
 public void action() {
 try {
 ContentElement content =
getContentManager().extractContent(request);
 SearchingManufacturersOperation smo =
(SearchingManufacturersOperation)((Action)content).getAction();
 Object obj = processManuOperation(smo);
 if (obj == null) replyNotUnderstood(request);
 else {
 ACLMessage reply = request.createReply();
 reply.setPerformative(ACLMessage.INFORM);
 Result result = new Result((Action)content, obj);
 getContentManager().fillContent(reply, result);
 send(reply);
 System.out.println("Operation about manufacturer
processed.");
 }
 }
 catch(Exception ex) { ex.printStackTrace(); }
 }
 }
...

23

4. Conclusion
This report discusses the design and development of agents in UNDERSTANDER. We
particularly draw the reader attention to the definition of our agent communication protocol and
their behaviour. This report fully relies on UNDERSTANDER knowledge base (ontologies) which
is previously developed in WP4, and described in D.4 “Business Intelligence Knowledge Base”.
Our user agents are developed in JADE, by consulting the online manuals (JADE, 2004), (JADE
Guide, 2010). As one of the early results of this task, we refer on the paper “UNDERSTANDER
Business Intelligence Seeker - User Agent” that is presented at the miproBIS (Business
Intelligence Systems) conference in 2014 (Damjanovic & Behrendt, 2014).

The next step is done by WP2, described in D.2 “Conceptual Dependency Scripts for Business
Intelligence”, in which we try to connect CD theory with the searching functionality of our user
agents developed in WP3.

24

References
(Ahamo & Aljawaherry, 2012) A. Y. Ahamo, and M. A. Aljawaherry, “Constructing a collaborative

multi-agents system tool for real-time system requirements” In International Journal of
Computer Science (IJCSI), Vol. 9, No. 4, 2012.

(Arthur, 1994) W. Arthur. Inductive reasoning and bounded rationality. Complexity in Economic
Theory, 84(2):406–411, 1994.

(Balin & Truszkowski, 2002) Bailin, S. C., Truszkowski, W. Ontology negotiation between
intelligent information agents. The Knowledge Engineering Review, Vol.17(1), pp. 7-19.
2002.

(Burnstein et al., 2003) Burnstein, M., McDermott, D., Smith, D.R., Westfold, S.J., Derivation of
glue code for agent interoperation. Autonomous Agents and Multi-Agent Systems,
Vol.6(3):265-286, 2003.

(Chira, 2007) C. Chira, “A multi-agent approach to distributed computing,” Computational
Intelligence Report No, vol. 42007, 2007.

(Chuan, 2011) Z. Chuan, "A software collaborative development environment based on
intelligent agents", In proceedings of the 3rd International Workshop on Intelligent Systems
and Applications (ISA), pp. 1-4, 2011.

(Claus & Boutilier, 1998) C. Claus and C. Boutilier. The dynamics of reinforcement learning in
cooperative multiagent systems. In Proceedings of National Conference on Artificial
Intelligence AAAI/IAAI, pages 746–752, 1998.

(Damjanovic & Behrendt, 2014) V. Damjanovic, W. Behrendt, “UNDERSTANDER Business
Intelligence Seeker - User Agent”, In Proceeding of the 37th International Convention
miproBIS (Business Intelligence Systems) 2014, Opatija, Croatia, 28 May, 2014.

(Ding, Finin, & McGuinness, 2010) Ding, L., Shinavier, J., Finin, T., McGuinness, D.L.:
owl:sameAs and Linked Data: An Empirical Study. In: Second Web Science Conference.
Raleigh, North Carolina (2010).

(Doherty et al., 2005) Doherty, P., Szalas, A. Lukaszewicz, W. Approximative Query Techniques
for Agents with Heterogeneous Ontologies and Perceptive Capabilities, In Proceedings of
the 9th International Conference on Principles of Knowledge Representation and
Reasoning, 2004.

(Ferber, 1999) Ferber, J., 1999. Multi-Agent Systems: An Introduction to Artificial Intelligence.
1999.

(Ficici & Pollack, 2000) Ficici, S. and Pollack, J. A game-theoretic approach to the simple
coevolutionary algorithm. In Proceedings of the Sixth International Conference on Parallel
Problem Solving from Nature (PPSN VI). Springer Verlag, 2000.

(Giri, 2011) K. Giri, “Role of ontology in Semantic web,” DESIDOC Journal of Library &
Information Technology, Vol. 31, No. 2, 2011.

(Glance & Huberman, 1994) N. Glance and B. Huberman. The dynamics of social dilemmas.
Scientific American, 270(3):76–81, March 1994.

25

(Gog & Gan, 2005) W. T. Goh, and J. W. P. Gan, "A dynamic multi-agent based framework for
global supply chain", In Proceedings of ICSSSM '05. 2005 International Conference on
Services Systems and Services Management, Vol 2., pp. 981-984, 2005.

(Greenwald et al., 2002) A. Greenwald, J. Farago, and K. Hall. Fair and efficient solutions to the
Santa Fe bar problem. In Proceedings of the Grace Hopper Celebration of Women in
Computing 2002, 2002.

(Himmelspach et al., 2003) Himmelspach, R., Williamson, R.E., Wasteneys, G.O., 2003.
Cellulose microfibril alignment recovers from DCB-induced disruption despite microtubule
disorganization. Plant J 36: 565–575

(Iordan et al., 2008) V. Iordan, A. Naaji, and A. Cicortas, “Deriving ontologies using multi-agent
systems,” WSEAS Transactions on Computers, vol. 7, no. 6, pp. 814-826, 2008.

(Janowicz & Hitzler, 2013). K. Janowicz, and P. Hitzler. Thoughts on the Complex Relation
Between Linked Data, Semantic Annotations, and Ontologies. In Proceedings of the 6th
International workshop on Exploiting Semantic Annotations in Information Retrieval (ESAIR
2013), pp. 41-44, ISBN: 978-1-4503-2413-7.

(JADE, 2004) JADE online manual. Online available:
http://www.iro.umontreal.ca/~vaucher/Agents/Jade/primer3.html

(JADE Guide, 2010) JADE’s Programmer’s Guide. last update 2014. Online available:
http://jade.cselt.it/doc/programmersguide.pdf

(Jennings, 2000) N. R. Jennings, “On agent-based software engineering” Artificial Intelligence,
vol. 117, no. 2, pp. 277-296, 2000.

(Jiao et al., 2006) J. Jiao, X. You, and A. Kumar, “An agent-based framework for collaborative
negotiation in the global manufacturing supply chain network” Robotics and Computer-
Integrated Manufacturing, vol. 22, no. 3, pp. 239-255, 2006.

(Kapetanakis & Kudenko, 2002) S. Kapetanakis and D. Kudenko. Reinforcement learning of
coordination in cooperative multi-agent systems. In Proceedings of the Nineteenth National
Conference on Artificial Intelligence (AAAI02), 2002.

(Lauer & Riedmiller, 2000) M. Lauer and M. Riedmiller. An algorithm for distributed
reinforcement learning in cooperative multi-agent systems. In Proceedings of the
Seventeenth International Conference on Machine Learning, pages 535–542. Morgan
Kaufmann, San Francisco, CA, 2000.

(Lee & Wang, 2009) C.-S. Lee, and M.-H. Wang, “Ontology-based computational intelligent
multi-agent and its application to CMMI assessment” Applied Intelligence, Vol. 30, No. 3, pp.
203-219, 2009/06/01, 2009.

(Malucelli and Oliveira, 2006) Malucelli, A., Palzer, D., Oliveira, E. Ontology-based Services to
help solving the heterogeneity problem in e-commerce negotiations. Journal of Electronic
Commerce Research and Applications - Special Issue Electronic data engineering: the next
frontier in e-commerce, Vol.5(3), Elsevier, 2006.

(Malucelli, 2006) A. Malucelli, 2006. Ontology-based Services for Agents Interoperability. PhD
Thesis. University of Porto, 2006. Online available: http://goo.gl/HXhbJ4

(Manzoni, 2009) Manzoni, S., 2009. AACIMP 2009 Summer School lecture by Sara Manzoni.
"Mathematical Modelling of Social Systems" course. Online:
http://www.slideshare.net/ssakpi/interactions-in-multi-agent-systems

26

(Marivate et al., 2008) V. N. Marivate, G. Ssali, and T. Marwala, "An intelligent Multi-Agent
recommender system for human capacity building", pp. 909-915, 2008.

(Mills & Stufflebeam, 2005) F. Mills, R. Stufflebeam. Introduction to Intelligent Agents. 2005.
Online: http://www.mind.ilstu.edu/curriculum/ants_nasa/intelligent_agents.php

(Monte-Alto et al., 2012) H. Monte-Alto, A. Biasão, L. Teixeira, and E. Huzita, "Multi-agent
applications in a context-aware global software development environment distributed
computing and artificial intelligence," Advances in Intelligent and Soft Computing, pp. 265-
272: Springer Berlin / Heidelberg, 2012.

(Mundhe & Sen, 2000) M. Mundhe and S. Sen. Evolving agent societies that avoid social
dilemmas. In D. Whitley, D. Goldberg, E. Cantu-Paz, L. Spector, I. Parmee, and H.-G.
Beyer, editors, Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2000), pages 809–816, Las Vegas, Nevada, USA, 10-12 2000. Morgan
Kaufmann. ISBN 1-55860-708-0.

(Nikolov & Motta, 2010) Andriy Nikolov, V.U., Motta, E.: Data Linking: Capturing and Utilising
Implicit Schema Level Relations. In: International Workshop on Linked Data on the Web.
Raleigh, North Carolina (2010).

(Nunes et al., 2011) I. Nunes, C. P. Lucena, U. Kulesza, and C. Nunes, "On the development of
multi-agent systems product lines: A domain engineering process" Agent-Oriented Software
Engineering X, Lecture Notes in Computer Science, pp. 125-139: Springer Berlin
Heidelberg, 2011.

(Nwana, 1996) H.S. Nwana, Software Agents: An Overview. Knowledge Engineering Review,
Vol. 11, No 3, pp.1-40, September 1996. Cambridge University Press.

(Ören & Yilmaz, 2012) Ören, T. I. & Yilmaz, L. (2012). Synergies of simulation, agents, and
systems engineering. Expert Systems with Applications 39(2012), pp. 81-88.

(Ören et al., 2007) Ören, T. I., Ghasem-Aghaee, N., & Yilmaz, L. (2007). An ontology-based
dictionary of understanding as a basis for software agents with understanding abilities. In
Proceedings of the spring simulation multiconference, Norfolk, VA, March 25–29, 2007 (pp.
19–27, ISBN: 1-56555-313-6).

(Ören et al., 2009) Ören, T. I., Yilmaz, L., Kazemifard, M., & Ghasem-Aghaee, N., (2009).
Multiunderstanding: A basis for switchable understanding for agents. In Proceedings of the
summer computer simulation conference on simulation series. Istanbul, Turkey, July 13–16,
2009 (Vol. 41(3), pp. 395–402). Dan Diego, CA: SCS.

(Ören, 2000) Ören, T. I. Opening paper. Understanding: A taxonomy and performance factors.
In D. Thiel (Ed.), Proceedings of FOODSIM’2000, Nantes, France, June 26–27, 2000 (pp.
3–10). San Diego, CA., 2000.

(Pakdeetrakulwong & Wongthongtham, 2013) U. Pakdeetrakulwong & P. Wongthongtham:
State of the Art of a Multi-Agent Based Recommender System for Active Software
Engineering Ontology. International Journal of Digital Information and Wireless
Communications (IJDIWC) 3(4): 29-42, 2013.

(Panait & Luke, 2005) Panait, L., Luke, S., Cooperative Multi-Agent Learning: The State of the
Art. Autonomous Agents and Multi_Agent Systems. 11, 387-434, 2005.

(Panait & Wiegand, 2003) L. A. Panait, R. P. Wiegand, and S. Luke. Improving coevolutionary
search for optimal multiagent behaviors. In Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence (IJCAI-03), 2003. Online: http://goo.gl/BJiZUL

27

(Panait et al., 2004) L. Panait, R. P. Wiegand, and S. Luke. A visual demonstration of
convergence properties of cooperative coevolution. In Parallel Problem Solving from Nature
— PPSN-2004. Springer, 2004.

(Paydar & Kahani, 2011) S. Paydar, and M. Kahani, “An agent-based framework for automated
testing of web-based systems” Journal of Software Engineering and Applications, 2011.

(Pinto et al., 1999) Pinto HS, Gómez-Pérez A, Martins JP (1999) Some Issues on Ontology
Integration. In Proc. of IJCAI99's Workshop on Ontologies and Problem Solving Methods:
Lessons Learned and Future Trends. Vol. 18, pp 7-1 - 7-12. Stockholm, Sweden, 1999.

(Qingning et al., 2003) H. Qingning, Z. Hong, S. Greenwood, “A multi-agent software
engineering environment for testing Web-based applications”, In Proceedings of the 27th
Annual International Conference on Computer Software and Applications, pp. 1039--1045,
2003.

(Romero et al., 2008) M. Romero, A. Viscaino, and M. Piattini, "Towards the definition of a multi-
agent simulation environment for education and training in global requirements elicitation",
In Proceeding of the Conference on Human System Interactions, pp. 48-53, 2008.

(Steels, 1998) Steels, L. The origins of ontologies and communication conventions in multi-
agent systems. Autonomous Agents and Multi-Agent Systems, Vol.1(2):169-194, 1998.

(Suguri et al., 2001) Suguri, H., Kodama, E., Miyazaki, M., Nunokawa, H., Noguchi, S.
Implementation of FIPA Ontology Service. In Proceedings of the Workshop on Ontologies in
Agent Systems, AAMAS, Montreal, Canada, 2001.

(Takahashi, 2008) Takahashi, T. 2008. RoboCup Rescue - Agent Based Disaster Simulation
System: Challenges and Lessons Learnt. Agents, Simulation and Application. (Eds. A.M.
Uhrmacher and D. Weyns), Taylor and Francis.

(Tolk et al., 2007) Tolk, A., Diallo, S.Y., Turnitsa, C.D., 2007. Applying the levels of conceptual
interoperability model in supporting of integratability, interoperability and composability for
system-of-systems engineering. Journal for Systemics, Cybernetics and Informatics, 5(5).
65-74.

(Tolk, 2006) Tolk, A. 2006. What comes after the Semantic Web: Pads implications for the
Dynamic Web. 20th Workshop on Principles of Advanced and Distributed Simulation
(PADS’06), pp. 55-62. IEEE Computer Society.

(Tzitzikas & Meghini, 2003) Tzitzikas, Y., Meghini, C. Ostensive automatic schema mapping for
taxonomybased peer-to-peer systems. In Proceedings of the 7th International Workshop on
Cooperative Information Agents, Helsinki, Finland, 2003.

(Uhrmacher, 2002) Uhrmacher, A.M., 2002. Simulation for agent-oriented software engineering.
First International Conference on Grand Challenges, (Eds. W.H. Lunceford and E. Page),
SCS, San Diego.

(van Diggelen et al., 2005) van Diggelen, J., Jan Beun, R., Dignum, F, van Eijk, R. M., Meyer, J-
J. Optimal Communication Vocabularies and Heterogeneous Ontologies, In: van Eijk, R. M.,
Huget, M. P., Dignum, F. (eds.), Developments in Agent Communication, LNAI 3396,
Springer Verlag, Berlin Heidelberg, pp. 76-90, 2005.

(van Eijk et al., 2001) van Eijk, R. M., Boer, F. S., van der Hoek, W., Meyer, J-J. Ch. On
Dynamically Generated Ontology Translators in Agent Communication, International Journal
of Intelligent Systems, Vol.16, pp.587-607, 2001.

28

(Wiegand, 2003) Wiegand, R.P. Analysis of Cooperative Coevolutionary Algorithms. PhD thesis,
Department of Computer Science, George Mason University, 2003.

(Wiesman and Roos, 2004) Wiesman, F., Roos, N. Domain independent learning of ontology
mappings, In: Jennings, N., Sierra, C., Sonenbergm, L., Tamble, M. (eds.), AAMAS, ACM
Press, New York, USA, pp.846-853, 2004.

(Williams et al., 2003) Williams, A., Padmanabhan, A., Blake, M. B.Local Consensus Ontologies
for B2B-Oriented Service Composition, In: Rosenschein, J., Sandholm, T., Wooldridge, M.,
Yokoo, M. (eds.), AAMAS, pp. 647-654. ACM Press, Melborne, 2003.

(Willmott, 2001) Willmott, S., Constantinescu, I., Calisti, M. Multilingual Agents: Ontologies,
Languages and Abstractions, In Proceedings of the Workshop on Ontologies in Agent
Systems, 5th International Conference on Autonomous Agents, Montreal, Canada, 2001.

(Wolpert et al., 1999) D. H. Wolpert, K. R. Wheller, and K. Tumer. General principles of
learning-based multi-agent systems. In O. Etzioni, J. P. M¨uller, and J. M. Bradshaw, editors,
Proceedings of the Third International Conference on Autonomous Agents (Agents’99),
pages 77–83, Seattle, WA, USA, 1999. ACM Press.

(Wooldridge & Jennings, 1995) M. Wooldridge and N.R. Jennings,1995. Intelligent agents:
theory and practice. 10(2). Knowledge Engineering Review. pp. 115–152

(Wooldridge, 2002) M. Wooldridge. An Introduction to Multiagent Systems. John Wiley and
Sons Ltd, February 2002.

(Yilmaz & Ören, 2009a) Yilmaz, L., & Ören, T. I. (Eds.). (2009a). Agent-directed simulation and
systems engineering. Berlin, Germany: Wiley.

(Yilmaz & Ören, 2009b) Yilmaz, L., & Ören, T. I. (2009b). Agent-directed simulation (ADS). In L.
Yilmaz & T. I. Ören (Eds.), Agent-directed simulation and systems engineering (pp. 111–
143). Berlin, Germany: Wiley.

(Yilmaz and Tolk, 2006) Yilmaz, I. and Tolk, A., 2006. Engineering ab initio dynamic
interoperability and composability via agent-mediated introspective simulation. Winter
Simulation Conference, pp. 1075-1182.

(Zhong et al., 2004) Z. Zhong, J. D. McCalley, V. Vishwanathan, and V. Honavar, "Multi-agent
system solutions for distributed computing, communications, and data integration needs in
the power industry", In IEEE Power Engineering Society General Meeting, pp. 45-49 Vol.1,
2004.

